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Abstract
It is shown that ferromagnetic filaments with free and unclamped ends undergo
buckling instabilities under the action of twist. Solutions of nonlinear equations
describing the buckled shapes are found, and it is shown that the transition to
the buckled shape is subcritical if the magnetization is parallel to the field and
supercritical when the magnetization of the straight filament is opposite to the
external field. Solutions with the localized curvature distribution are found
in the case of long filaments. The class of solutions corresponding to helices
is described, and the behavior of coiled ferromagnetic and superparamagnetic
filaments is compared.

PACS numbers: 87.10.−e, 83.80.Gv, 62.20.mq

1. Introduction

Flexible ferromagnetic filaments are used by magnetotactic bacteria for navigation in the
magnetic field of the Earth [1]. They can be made artificially by linking commercially available
ferromagnetic particles functionalized by streptavidin with biotinized DNA fragments [2]. The
investigation of their behavior in an ac magnetic field and at the magnetic field inversion has
shown that even short filaments possess quite large values of the magnetoelastic number Cm

that expresses the ratio of magnetic and elastic torques. Thus, these filaments may be used
for the creation of magnetically driven microengines of new types [3]. For the analysis of
magnetically driven microengines, the knowledge of their behavior under different loadings is
required. The necessary spatial symmetry breaking may be caused by the buckling instabilities
[4, 5]. For example, it has recently been shown that ferromagnetic filaments possess chiral
symmetry breaking oscillatory instability under the action of the twist and the magnetic field
which leads to their rotation [6].

The buckling of elastic rods in a magnetic field has been studied previously in different
situations. The buckling of an extensible string due to the Lorentz force on the current in the
external field is considered in [7, 8]. The interest in this problem is caused by the creation of
tethered satellite systems [9].
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It is interesting to remark here that, in spite of completely different physics, the formation
of helicoidal shapes takes place also in the case of ferromagnetic strings in the magnetic
field. This may be illustrated as follows. The stress �F arising in an extensible ferromagnetic
string reads �F = T (ε)�e3 − MH Re(�e∗�h · �e) [10] (�e3 is the tangent vector, ε is the extension
of the filament, T (ε) is the tension, M is the magnetization of filament per unit length, �h is
the unit vector along the external field, H is the field strength and �e = �n + i�b (i2 = −1),
�n, �b are normal and binormal vectors, respectively). The equilibrium condition d �F/dl = 0
for the ferromagnetic string reads k(T + MH �e3 · h) = 0, dT/dl + MHk�h · �n = 0, where k
is its curvature. These equations have a non-trivial solution (k �= 0) that corresponds to a
helix with its axis along the field. For the helix, we have �h · �n = 0 hence T = const > 0
and �e3 · �h < 0. For the string given in the parametric form �r = �r(l0), l0 ∈ [0, L0] with
�r(0) = 0; �r(L0) = c�ez (L0 is the string length in the unstretched state, l0 is the arclength of
material points in the unstretched state, c > L0) the extension ε = c/(L0 cos ϑ) − 1, where
ϑ is the angle between the tangent �e3 and the axis of the helix parallel to �ez. By the equation
of state T = S(L − L0)/L0 (S is the stretching modulus), the equilibrium condition gives
S(c/(L0 cos ϑ) − 1) = MH cos ϑ . This, for the critical value of the field strength applied
opposite to the magnetization of the string, gives (MH)c = S(c/L0 − 1). If the field strength
is large, the angle of the helix is given by cos ϑ = √

Sc/(L0MH).
The physics of the helix formation by the ferromagnetic string is rather simple: if the

magnetic field is applied opposite to the magnetization of the stretched magnetized string, it
tries to overturn to the direction of the field. The string does it by local stretching and by
orienting its local elements at some angle with respect to the field. Since the tension in the
string is constant, the angle of the tangent is also constant. That is possible only in the case of
the helix.

For real ferromagnetic filaments, the bending and twisting modulus should be taken into
account. The theoretical analysis of the buckling instabilities of ferromagnetic filaments
under the inversion of the magnetic field is carried out in [4]. Experimental observations
of the buckling instability of the ferromagnetic filaments synthesized by linking micron-
sized ferromagnetic particles by 1000 bp long DNA fragments are carried out in [2]. From the
comparison of the experimentally observed shape dynamics of the filaments with that obtained
numerically from the same initial conditions, it follows that the value of magnetoelastic number
Cm for rather short filaments, used in the experiments, is approximately equal to 10.

If an ac magnetic field is applied, different phenomena take place in dependence on its
frequency. If the frequency is high enough, the ferromagnetic filament orients perpendicularly
to the field [2, 4]. The value of the magnetoelastic number, determined from the time
dependence of the filament orientation angle, is close to that determined from the dynamics
of the filament at the magnetic field inversion [2].

It is suggested in [11] that one can obtain information about the cytoskeleton
of magnetotactic bacteria using the effect of orientation of ferromagnetic filaments
perpendicularly to the ac magnetic field. In the case when the length of the chain of
magnetosomes is much less than the length L of the semiflexible polymer to which it is
attached, it is possible to consider the deformation of the semiflexible polymer induced by
the torque on the magnetic dipole situated in its center. Then for the sum of mean per period
magnetic and elastic energies of the attached filament, we have E = −mH 2 sin2 β/4Hc, where
β is the angle which the filament makes with the field direction, m is the total magnetic moment
of the chain of magnetosomes. Coercitive force Hc = 6lpHL/L (lp is the persistence length
of the biopolymer, HL = kBT /m) characterizes the coupling of the magnetic filament to the
elastic network. This energy is similar to the mean energy of the chain of the ferromagnetic
particles interacting by magnetodipolar forces in an ac field, when Hc = 1.2πMs (Ms is

2



J. Phys. A: Math. Theor. 42 (2009) 235206 M Belovs et al

the saturation magnetization of the ferromagnetic particles). These estimates show that if the
persistence length of the bacterium cytoskeleton corresponds to the persistence length of actin,
then Hc due to the flexibility of the network is much less than the coercitive force due to the
magnetodipolar interactions. Although existing experimental data show that magnetotactic
bacteria align perpendicularly to the ac magnetic field nevertheless they do not give the
evidence that this is due to the flexibility of cytoskeleton to which the chain of magnetosomes
is attached [11].

At present moment, the mechanical properties of the ferromagnetic filaments of
magnetotactic bacteria are not investigated sufficiently. There is only estimate of the bending
modulus A of the filaments due to the magnetodipolar interactions: A = m2

p

/
2d2 (mp is the

magnetic moment of the magnetosomes, d is their diameter) [12], which allow one to explain
the formation of the rings of chains of the ferromagnetic particles [12] and estimate the stress
necessary for their buckling [13, 14]. The estimate of the bending modulus shows that the
magnetoelastic number MHL2/A of the chain of ferromagnetic particles may be calculated as
3HN2/πMs , where N is the number of particles in the chain. Thus quite real are the values of
the magnetoelastic number about 103 or more. Numerical simulation data on the behavior of
the chains of superparamagnetic particles in the shear flow containing up to 102 particles are
given in [15]. The data correspond quite well to the estimates obtained by using the value of
bending modulus due to the magnetodipolar interactions close to given above.

Here the equilibrium shapes due to the buckling of magnetic filaments under the action
of the twist and magnetic fields are analyzed. Some preliminary results on the linear stability
are given in [2, 6]. The buckling of elastic rods under the action of twist is the well-known
problem of solid state mechanics (see, for example, [16–18]).

The model and the basic equations are introduced in section 2, the localized solution for
the curvature is obtained in section 3, the helices are described in section 4 and the buckled
shapes of filaments with a finite length are considered in section 5.

2. Model

The model of the twisted ferromagnetic filament is based on the Kirchhoff model of the elastic
rod extended to account for interaction energy of the filament with an external field [10] (l is
the contour length of the filament, subscript ,... denotes derivative). Its energy reads

E = 1

2
A

∫ (
�2

1 + �2
2

)
dl +

1

2
C

∫
�2

3 dl − MH

∫
�e3 · �h dl −

∫
� dl. (1)

Here M is the magnetization of the filament per its unit length, which is oriented along
the tangent vector �e3 of the filament. The unit vectors �ei of the material frame obey
�ei,l = �� × �ei(i = 1, 2, 3, the vector �� characterizes the bending and twisting strain of
the filament). A and C are the bend and twist elastic constants, H is the applied magnetic
field strength and �h is the unit vector along the applied magnetic field. Inextensibility
of the filament is enforced by the term − ∫

�dl in (1). The Lagrange multiplier �

describes the tension enforcing the inextensibility. By the use of the complex curvature
ψ = (−i�1 + �2) exp (i

∫ l
�3dl′) and �ε = (�e1 + i�e2) exp (d

∫ l
�3 dl′) and by the standard

variational procedure [10, 19], the following expressions for the stress �F and the couple stress
�T of the ferromagnetic filament under the action of the magnetic field are derived [2, 6]:

�F = Re[�ε∗(−Aψ,l + iC�3ψ − MH �h · �ε)] − �e3
(

1
2A|ψ |2 + �

)
, (2)

�T = −AIm(ψ�ε∗) + C�3�e3. (3)
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In the case of superparamagnetic filament [5, 10], the magnetic field-dependent term
�Fm = −Re[�ε∗MH �h · ε] in the relation for the stress (2) is given as follows

�Fm = Re[�ε∗(−
MH �e3 · �h�h · �ε)], (4)

where


M = πa2 (μ − 1)2H

4π(μ + 1)

is the part of superparamagnetic filament magnetization that depends on its orientation due to
the demagnetizing field effect (a is the radius of the circular cross section of the filament and
μ is its magnetic permeability).

It would be relevant to notify here the difference between the magnetization mechanisms
of the ferromagnetic and superparamagnetic filaments. The ferromagnetic filaments have
spontaneous magnetization aligned along the tangent vector of the filament. As an example,
we have the chain of the ferromagnetic nanoparticles in magnetotactic bacteria. Magnetic
moments of particles are parallel due to the strong dipolar coupling. The magnetization of
the superparamagnetic filaments arises only in an external field and due to the long-range
dipolar interactions depends on the orientation of the magnetic field with respect to the axis of
filament. The dependence of the magnetization on the direction of the applied magnetic field
gives the torque on the filament and the normal force described by the relation (4). It is also
necessary to emphasize that the effects of the magnetic field on the filaments considered in this
paper are determined by the torques. Effects of the Kelvin force M∇H in the non-uniform
applied fields are worthy of separate investigation.

In the following, the equilibrium shapes of the filament with free and unclamped ends are
considered. The equation of the torque balance

�T,l + �e3 × �F + MH �e3 × �h = 0 (5)

implies C�3 = const. Since for a free rod in the equilibrium we have �F = 0, relation (2)
gives

− Aψ,l + iC�3ψ − MH �h · �ε = 0 (6)

and
1
2A|ψ |2 + � = 0. (7)

Vectors �e3, �ε obey the equations

d�e3

dl
= Re(ψ�ε∗), (8)

d�ε
dl

= −ψ�e3, (9)

d�r
dl

= �e3. (10)

The shape of the filament can be calculated using equations (8)–(10), if the complex curvature
and the boundary conditions for vectors �e3, �ε, �r are known.

Equation (6) is not intrinsic since it contains the term dependent on the orientation of the
filament. Using equations (8)–(9), it is possible to obtain the equation containing only the
intrinsic variables of the center line of the filament. The equilibrium condition �F,l = 0 gives

−Aψ,ll + iC�3ψ,l +
(
MH �e3 · �h − � − 1

2A|ψ |2)ψ = 0 (11)
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and

−�,l + MH Re(ψ �h · �ε∗) = 0. (12)

Let us define W = −� + MH �e3 · �h. Then equation (12) can be written as

W,l = 0. (13)

As a result, equation (11) reads

−Aψ,ll + iC�3ψ,l − 1
2A|ψ |2ψ + Wψ = 0, (14)

where W is constant because of (13). It can be found from the boundary conditions. Since
for the filament with free and unclamped ends ψ(±L) = 0 and �(±L) = 0 we have
W = MH �e3(±L) · �h, relation (7) gives

MH �e3 · �h = W − 1
2A|ψ |2 (15)

that will be useful for the discussion of the steady shapes of the filament.

3. Localized solution

In the case of a long twisted filament, it is possible to find the localized solution of
equation (14) such that ψ(±∞) = 0 and �e3(±∞) = �h. In this case, the characteristic
distance L∗ is determined by the twist: L∗ = A/C�3(�3 > 0). By scaling ψ = ψ̃/L∗ and
l = l̃L∗ (tildas further are omitted) and by putting ψ = exp (il/2)f (l) we obtain the following
equation for the function f :

f,ll + 1
2 |f |2f = (

T m − 1
4

)
f. (16)

We see that the shape of the filament is determined by the magnetotwisting number
T m = MHA/(C�3)

2 that characterizes the ratio of the magnetic torque MHL∗ to the twisting
torque C�3. The real solution of equation (16) satisfying the boundary conditions reads

f =
√

4T m − 1

cosh (
√

4T m − 1l/2)
. (17)

It exists for values of the magnetotwisting number T m > 1/4.
The tangent angle can be found from the integral (15), which reads

1
2f 2 = T m(1 − �e3 · �h). (18)

Relation (18) shows that for angle ϑ(0), between the tangent and the magnetic field at l = 0,
the following relation sin2 (ϑ(0)/2) = 1 − (4T m)−1 is valid.

The shape of the filament corresponding to the localized curvature distribution can be
found by integration of equations (8)–(10) at the boundary conditions �r(−∞) = 0; �e3(−∞) =
(0, 0, 1); �e1(−∞) = (1, 0, 0); �e2(−∞) = (0, 1, 0). The shape obtained by the integration in
the interval l = [−200; 200] at T m = 0.2506 is shown in figure 1.

As we can see, the shape of the filament depends on the ratio of the characteristic magnetic
healing length LH = √

A/MH and L∗. Near the threshold (LH 
 2L∗), the spatial extension
of the buckled region due to the stabilizing action of the magnetic field is large, and we observe
the shape shown in figure 1. For the subcritical values of the twist, the loop with a radius
approximately equal to LH is formed. For example, the characteristic shape of the filament
for T m = 1/2 and ϑ(0) = π/2 is shown in figure 2. We see the formation of the loop
perpendicular to the field on one side of the filament.
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Figure 1. Localized shape perturbation of twisted ferromagnetic filament. T m = 0.2506.
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Figure 2. Localized shape perturbation of twisted ferromagnetic filament. T m = 0.5.

The distance between the ends of the long filament with a curvature given by the localized
solution (17) is less than the length of the straight filament by

D =
∫ ∞

−∞
(1 − cos ϑ) dl.

By equations (17) and (18) for the length D adsorbed due to bending, we find

D = A

C�3

2
√

4T m − 1

T m
. (19)

The length D attains its maximal value 4A/C�3 at T m = 1/2 that corresponds to the critical
torque C�3c = √

2MHA.
The square root dependence of the radius of the loop on the field may be obtained by a

simple analysis of the energy of the filament [20]. When a loop in the form of a circle with
radius r is formed, the magnetic energy increases by MH2πr and the bending energy by
Aπ/r . The increase of the total energy 2π(MHr + A/2r) comes from the work of the twisting
torque on one turn: 2πC�3. The minimum of the energy is attained for r = LH/

√
2 that

gives the critical torque
√

2MHA corresponding to T m = 1/2. As mentioned in [21], this
value of the torque corresponding to T m = 1/2 is critical for the formation of a plectoneme,
when the loop flips to the plane of the magnetic field.

Interesting conclusions may be obtained from the analysis of the energy of a bent twisted
filament. In the case of a constant twisting torque T3 its work −T3R should be taken into
account [22], where R is the rotation angle of the filament. The relation R = 2πLk allows
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us to express the angle R using the linking number Lk = T w + Wr [23] that is the sum of
the twist T w and writhe Wr . If the twist T w is large then it is energetically advantageous
to increase the angle R by the writhing of the filament. According to Fuller [24], the local
density of the writhe wr may be expressed as

2πwr = �ez · �e3 × d�e3/dl

1 + cos ϑ
. (20)

Using equation (5), equation (8) and Tz = C�3 [16], the last expression can be rewritten as

2πwr = C�3

A

1 − cos ϑ

1 + cos ϑ
. (21)

By equations (17) and (18), and the integration for the filament with length 2L � L∗, we have

2πWr = 4 arctan
√

4T m − 1.

By writhing, the rotation angle R is increased without further twisting. It means that
the energy of the twist is diminished in comparison with the straight filament by amount
−C�34 arctan

√
4T m − 1. The writhing makes the filament bend that leads to the increase of

the bending and magnetic energies. By relation (1) and (18), we have C�3
∫ ∞
−∞ f 2 dl−MH2L

for this increase. As a result, the positive difference of energies of the long writhed filament
and the straight rod is [25]


E = C�3(4
√

4T m − 1 − 4 arctan
√

4T m − 1). (22)

The same result follows from the consideration of the filament at a constant rotation angle
R. In this case, the twist diminishes at writhing by 
�32L = −4 arctan

√
4T m − 1. The

corresponding decrease of the twisting energy for a long filament, when 
�3 is small, is

2LC�3
�3 = −C�34 arctan
√

4T m − 1.

Accounting for a change of the bending and magnetic energies, we obtain the relation (22).
At T m = 1/4 that corresponds to the threshold of the buckling instability of an infinite

twisted filament 
E = 0. For T m < 1/4, the straight shape of the filament is unstable. The
localized solution exists at T m > 1/4. This is in the range of the magnetotwisting number
corresponding to the stability region of the straight shape. In this case, 
E > 0 indicates
that the bifurcation to the buckled shapes of the long filaments is subcritical. The conclusion
about the subcritical bifurcation to the buckled shape is also in agreement with the result of
[26] that shows that the loop solution of the untwisted filament is unstable with respect to the
translation of the loop to one of the ends of the filament. In real situations, the loop may be
stabilized by the friction at the self-contact of the filament. The exact analysis carried out in
section 5 confirms the subcritical character of the bifurcation to the buckled shapes for the
long filaments.

For large T m, the relation (22) may be interpreted as follows. Equations for a
ferromagnetic filament in the equilibrium have a solution in the form of the loop having
the energy 8

√
MHA [26]. The twisted filament buckles and the arising loop flips to the plane

containing the external field. Linking number increases by 1 and the work carried out by the
external torque is 2πC�3. The energy increase is 8

√
MHA − 2πC�3—the one given by

equation (22) in the limit of large T m.

4. Helices

Localized solution is a particular solution describing the equilibrium of the long filament
under the action of the twist and the magnetic field. Experimentally localized states for
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twisted rubber rods with controlled distance between the ends are observed in [16] at post-
buckling transformation of the helice. The tension in these experiments responds passively.
Ferromagnetic filaments give the possibility to carry out the buckling experiments with twisted
rods at controlled tension, which role for the free filaments is played, as one can see from the
energy functional (1) by the magnetic field. The twisting torque may be created, for example,
by attaching magnetic beads to the ends of the filament as in the magnetic tweezer experiments
[20].

General solutions may be obtained from the equations expressing the condition of zero
stress in the filament (6) and (7). Multiplying equation (6) by ψ∗, its complex conjugate by
ψ , adding and taking into account relation (8) we have

−(A|ψ |2),l − MH2�h · d�e3

dl
= 0.

This gives the first integral W of the equilibrium equations
1
2A|ψ |2 + MH �h · �e3 = W, (23)

where W,l = 0. The relation (23), |ψ |2 = �2
1 + �2

2, and two relations which follow from the
torque balance

dT3

dl
= 0, (24)

dTz

dl
= 0 (25)

show the analogy between the integration of the equations of a symmetric heavy top and
the elastic rod [27]. Introducing the Euler angles ϑ, ϕ, α as in [28] (ϑ is the tangent angle
with respect to the direction of the magnetic field), scalings as in section 3, expressing
�2

1 + �2
2 = ϑ2

,l + ϕ2
,l sin2 ϑ and using Tz = C�3 [16], the integral W reads

W = 1
2ϑ2

,l + Ueff(ϑ). (26)

The effective potential

Ueff(ϑ) = 1

2
· 1 − cos ϑ

1 + cos ϑ
+ T m cos ϑ

at T m > 1/4 has minimum at ϑ given by the relation

ϑ = 2 arccos ((4T m)1/4). (27)

The minimal value of the effective potential is min(Ueff) = 1/2 − (1 − √
T m)2. If T m > 1/4

and W = min(Ueff) = 1/2 − (1 − √
T m)2 then ϑ = const that corresponds to a helix. If

1/2 − (1 − √
T m)2 < W < T m, the tangent angle ϑ is in the interval [ϑ1, ϑ2]. At the

value of the integral W = Ueff(0) = T m, we obtain the localized solution. Several shapes
corresponding to the intermediate values of T m and the particular values of the integral W

defined by W = Ueff(ϑ1) are shown in figure 3.
The analogy with the symmetric heavy top is no longer valid for the superparamagnetic

filament. Due to this, it is impossible to obtain such a family of solutions as described for the
ferromagnetic filaments. Nevertheless, it is possible to obtain the solution corresponding to
the helical shape of the superparamagnetic filament. The condition of zero stress is

−Aψ,l + iC�3ψ − 
MH �e3 · �h�h · �ε = 0, (28)

where ψ = k exp (iτ l), �ε = exp (iτ l)(�n + i�b). In the case of helix k = τ tan ϑ it gives

C�3τ − Aτ 2 = 
MH cos2 ϑ. (29)

8
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Figure 3. Periodic solutions for twisted ferromagnetic filament. The values of the integral W of
configurations from left to right: 0.4442; 0.4385; 0.4226. T m = 0.4444.

The maximum of the left side (29) in dependence on the torsion gives the critical torque for
the buckling of the superparamagnetic filament. Since 
M ∼ H , the critical torque for the
buckling of the superparamagnetic filament,

C�3c = 2
√

A
MH, (30)

grows linearly with the applied field strength. This is different from the behavior of the
ferromagnetic filament, for which the critical torque is proportional to the square root of the
field strength. Relations Tz = C�3, Tz = Ak · sin ϑ + C�3 cos ϑ and (29) give

T ms = 1

cos ϑ(1 + cos ϑ)2
, (31)

where T ms = 
MHA/(C�3)
2 is the magnetotwisting number of the superparamagnetic

filament. Expressing the rotation angle R (L is the length of the filament),

R = L�3

(
1 +

C

A
tan2

(
ϑ

2

))
, (32)

we obtain the following dependence of the rotation angle on the magnetotwisting number
(Lmag = √

A/
MH is the characteristic magnetic healing length)

RLmag

L
=

(
A

C
− 1

)
T m−1/2

s + 2
√

cos ϑ. (33)

Expression for the energy of the superparamagnetic helix with the work of the twisting torque
C�3R taken into account is

E = C�2
3L

2
− C�3R + L

(
A|ψ |2

2
− 
MH cos2 ϑ

2

)
.

Relations (29) and (32) give the following expression:


E = L
MH

(
− 1 − cos ϑ

T ms(1 + cos ϑ)
+

1

2
cos ϑ − 1

2
cos ϑ

√
cos ϑ

T ms

)
, (34)

for the difference of the energies of the straight and the helical superparamagnetic filaments.
The dependence of 
E/L
MH on the twisting angle RLmag/L is shown in figure 4
(A/C = 3/2). We see that the energy of the helical superparamagnetic filament is less
than that of the straight filament for all twisting angles. This behavior is different from the
behavior of the ferromagnetic filament.
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Figure 4. Energy of superparamagnetic helice.

5. Buckling of a filament with finite length

Let us consider the buckling of a filament with a finite length. Scaling the curvature with 1/L

and the length with L, the equation for the complex curvature of the force free filament under
the action of the magnetic field reads

−ψ,ll + iχψ,l − 1
2 |ψ |2ψ + Wψ = 0. (35)

The boundary conditions at the unclamped ends are

ψ(±1) = 0. (36)

Relations

−ψ,l(−1) + iχψ(−1) − Cm�ε(−1) · �h = 0 (37)

and

W = Cm�e3(−1) · �h (38)

allow us to determine the constant W and �e3(−1) · �h. Here the magnetoelastic number
Cm = MHL2/A and the twist χ = C�3L/A are introduced. Equation (35) contains only
intrinsic property of the filament—its complex curvature—and may be integrated without the
knowledge of the filament orientation. Then the unknown integration constant W can be found
from relations (37) and (38).

The neutral curve of the buckling instability of the twisted ferromagnetic filament in the
plane (Cm, χ) may be calculated from the linearized equation (35) at the boundary conditions
ψ(±1) = 0;W = Cm and can be found in [2, 6]. Neutral odd and even buckling modes are

(ψe, ψo) = exp (iχl/2)(cos (π(2n + 1)l/2), sin (πnl)). (39)

Here we find the solution of the nonlinear problem (35)–(38). Putting ψ = exp (iχ(l + 1)/2)

f (l) with a real function f , we have

2f,ll + U,f = 0, (40)

where

U(f ) = −
(

W − χ2

4

)
f 2 +

1

4
f 4.

Its first integral reads

f 2
,l + U = E0, (41)

10
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where E0 = f 2
,l (−1) = f 2

,l (1) � 0 due to relation (36). Putting f0 as the extremal curvature
at which f,l = 0, we have

E0 = −
(
W − χ2

4

)
f 2

0 +
1

4
f 4

0 ,

where χ2 − 4W + f 2
0 > 0 due to E0 > 0. As a result, the even solution (f (l) = f (−l)) of

equation (41) satisfying the boundary conditions ψ(±1) = 0 reads (K(k2) is elliptic integral
of type I)

f = 2k(2n + 1)K(k2)cn((2n + 1)K(k2)l, k2), (42)

where

k2 = f 2
0

2f 2
0 + χ2 − 4W

.

For the first even mode (n = 0) we have

f = 2kK(k2)cn(K(k2)l, k2). (43)

In a similar way, we obtain the solutions for the odd modes. In particular, the solution for
the first odd mode reads

f = 4kK(k2)cn(2K(k2)(l − 1/2), k2). (44)

Since �ε = (�e1 + i�e2) exp (iχ(l + 1)/2), where �e1(−1) = (cos β, 0,− sin β), �e2(−1) =
(0, 1, 0), �e3(−1) = (sin β, 0, cos β) and β is the angle the tangent makes with the magnetic
field at the end of the filament and then from (37) and (38) it follows that

Cm sin β = f,l(−1) (45)

and

W = Cm cos β. (46)

As a result, we obtain relations

f0 = 2kK(k2),

cos β = χ2 − (4 − 8k2)K2(k2)

4Cm
, (47)

Cm sin β = 2kK2(k2)
√

1 − k2,

which give in the parametric form the family of solutions of the nonlinear boundary problem
(35)–(38) bifurcating at χ2

c = ±4Cm + π2 (Cm > 0). For the analysis of the character of
these bifurcations, it is convenient to rewrite the last two equations of (47) in the form of a
single transcendental equation for angle β:

K

(
1

2

(
1 +

T m cos β − 1/4

Q1/2

))
=

√
Cm

T m
Q1/4, (48)

where

Q = (
T m − 1

4

)2
+ 1

2T m(1 − cos β).

The character of the bifurcation for a given Cm may be analyzed by the series expansion at
T mc1 = Cm/(4Cm + π2), which gives

1 − cos β = (T m/T mc1 − 1)

1 − T mc1

( 1

4T mc1
− 1

)
. (49)
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Figure 5. Critical values of the magnetotwisting number as a function of the magnetoelastic
number. T mc1—lower curve and T mc2—upper curve.
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Figure 6. Bifurcation curve of twisted ferromagnetic filament. Dashed lines—asymptotic relations
equation (49); (50). Cm = 1.

Since T mc1 < 1/4, a nontrivial bifurcating solution exists if T m > T mc1, which corresponds
to the region, where the straight filament with the magnetization along the external field is
stable. Thus the bifurcation is subcritical.

It is shown in [4] that a straight ferromagnetic filament with the magnetization opposite
to the field is unstable with respect to the even U-like mode if Cm > π2/4. The critical
magnetotwisting number for this case is given by T mc2 = Cm/(π2−4Cm). The dependences
of T mc1 and T mc2 on Cm are shown in figure 5. For the solution bifurcating at T mc2 we have
the series expansion

1 + cos β = − (T m/T mc2 − 1)

1 + T mc2

(
1 +

1

4T mc2

)
. (50)

The angle β for the solution bifurcating at T mc1 and T mc2 together with the asymptotic
relations (49) and (50) is shown in figure 6 for the characteristic case Cm = 1. There
is a qualitative difference between the behavior of the filament for Cm < π2/4 and for
Cm > π2/4. In the first case, the solution bifurcating at (β = 0, T m = T mc1) joins the
solution bifurcating at (β = π, T m = T mc2). In the second case, β reaches the maximum
at some intermediate value of the magnetotwisting number. We illustrate this by the plot in
the (χ, Cm) plane of the curves corresponding to constant values of angle β (figure 7). With
the increase of the angle β, the constant angle curves approaches the dashed line in the lower

12
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Figure 7. Constant angle curves. From left to right cos β = 0.9; 0.95; 0.975; 0.99. Dashed
lines—neutral curves χ =

√
π2 + 4Cm;χ = √

π2 − 4Cm.
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Figure 8. Bifurcation curve of twisted ferromagnetic filament. Cm = 1000.

left corner of figure 7. There are no solutions below this curve. For large Cm, the angle β

is small and is given by the asymptotic expression β ∼ 8 exp (−√
Cm), which follows from

equation (48). The characteristic dependence of angle β on the twist for this case of a large
Cm equal to 1000 is shown in figure 8.

The shapes of the filaments corresponding to the solutions for the complex curvature can
be found by integrating equations (8)–(10) at the boundary conditions:

�e3(−1) = (sin β, 0, cos β),

Re(�ε(−1)) = (cos β, 0,− sin β),

Im(�ε(−1)) = (0, 1, 0),

�r(−1) = (0, 0, 0).

(51)

The evolution of the shapes along the constant angle curves is shown in figure 9 (cos β = 0.999)

and in figure 10 (cos β = 1/
√

2) for the increasing values of the magnetotwisting number.
We see that the shape evolves from the loop perpendicular to the field (figure 9) to the loop
in the plane of the field with the magnetization opposite to the direction of the magnetic
field. The shapes at T m → ∞ correspond to the magnetic elastica considered in [26] and,
as shown there, are unstable. For large Cm and T m close to 1/4, coiled shapes are formed,
as is illustrated by figure 11, where the buckled ferromagnetic filament at Cm = 1000 and
χ/χc = 0.9975 is shown.
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Figure 9. Shapes of buckled filaments. From left to right: T m = 1, 10, 100 (cos β = 0.999).
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Figure 10. Shapes of buckled filaments. From left to right: T m = 0.5, 10, 100 (cos β = 1/
√

2).
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Figure 11. Buckled twisted ferromagnetic filament. Cm = 1000;χ/χc = 0.9975.

Since at k → 1K(k2) 

√

4Cm − χ2/2 and cn(x, k2) → ch−1(x), the solution of the
boundary problem for large

√
4Cm − χ2 approaches the localized solution

f = χ
√

4T m − 1
1

ch(χ
√

4T m − 1l/2)
. (52)

Taking into account that in the limit of L → ∞ the characteristic distance is determined by
L∗, this solution coincides with (17).
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The solutions corresponding to the real function f are the only possible solutions for
the curvature of the ferromagnetic filament with the free and unclamped ends. Indeed, if
f = A exp (iϕ) (ψ = f exp (iχl/2)), where ϕ,l �= 0, A = A(l) � 0, then equation (35) is
equivalent to two equations for A and ϕ:

ϕ,llA + 2ϕ,lA,l = 0 (53)

and

−A,ll + ϕ2
,lA +

(
W − χ2

4

)
A − 1

2
A3 = 0. (54)

Equation (54) by the integration of equation (53) according to ϕ,l = c/A2 may be put into the
form

2A,ll + U,A = 0, (55)

where

U(A) = −
(

W − χ2

4

)
A2 +

A4

4
+

c2

A2
.

Its first integral reads

A2
,l + U = E0. (56)

U(A) has only one minimum for positive A and tends to +∞ at A → 0 and A → +∞.
This means that the solution with c �= 0 corresponds to the curvature in the interval
[A1;A2](U(A1) = U(A2) = E0(0 < A1 < A2)) and cannot satisfy the boundary condition
at the unclamped ends. Thus, the family of solutions found above is the only possible for the
filament with free and unclamped ends.

The solution of the equations of equilibrium of the free twisted ferromagnetic rod under
the action of the homogeneous field allows one to construct the solutions of other problems,
for example, to obtain the solution for the equilibrium of the rod with the hinged ends.

The condition of the equilibrium �F,l = 0 gives �F = �F0. This, using the identity
�F0 = Re(ε∗ �F0 · �ε) + �e3 �F0 · �e3 and the expression for the stress equation (2), gives

− Aψ,l + iC�3ψ − MH0�h0 · �ε = �F0 · �ε, (57)

1
2A|ψ |2 + � = �F0 · �e3. (58)

Equations (57), (58) and the integral W = −�+MH0�h0 · �e3 = const show that the problem of
the equilibrium shape of the filament under the action of the magnetic field �H0 and a constant
force �F0 is equivalent to the problem of the equilibrium shape of a free rod in the effective
magnetic field �H : M �H = �F0 + M �H0.

The equilibrium shapes of the free twisted filaments are parametrized by the dependence
of the tangent angle at the end of the filament on the dimensionless parameters Cm and T m.
In the case of the rod with the hinged ends, the values of these parameters are unknown and
should be found from the additional condition. This condition reads �F0 · (�r(L) − �r(−L)) = 0
and expresses the condition on the force applied at the hinge to be perpendicular to the radius–
vector connecting the ends of the filament. The condition of the hinge gives the necessary
equation for the force and thus the equilibrium solution for the force free ferromagnetic
filament allows one to construct solutions for the boundary conditions with the hinged ends.
The application of this principle for the analysis of the equilibrium shapes of twisted rods with
the hinged ends will be considered in the forthcoming publication.
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6. Conclusion

To conclude, we have found the family of buckled static shapes of the free ferromagnetic
filaments with unclamped ends, which bifurcates at values of parameters corresponding to
the threshold of linear instability of the straight configuration. The transition to the buckled
shape is subcritical in the case of magnetization along the field and supercritical when the
magnetization of the straight filament is opposite to the external field. At large values of the
magnetoelastic number, the shape of the ferromagnetic filament with the decrease of the twist
evolves from the shape with a loop oriented perpendicularly to the field to shape with a loop
in the plane of the field. Magnetization in the central part of the loop is opposite to the field.
Solutions corresponding to the helical shapes of the ferromagnetic and superparamagnetic
filaments are found, which show that the helical shape of a twisted superparamagnetic filament
is energetically more advantageous in comparison with the straight filament for all values of
the twist. It is remarked that similarly to an extensible string with the electric current the
ferromagnetic string at the equilibrium has helical shape under the action of external field.
Solutions of equations of equilibrium of the free twisted ferromagnetic filaments under the
action of the magnetic field allow us to construct the solutions for other problems, for example,
calculate equilibrium shapes of twisted filaments with hinged ends.
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[10] Cēbers A 2003 J. Phys.: Condens. Matter 15 S1335
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